“The measure of intelligence is the ability to change.”

Albert Einstein

Research Unit 5159

Our environment is constantly changing. Successful survival under these conditions implies that our behavior has to be flexible as well. We experience different places and contexts, have to conduct different tasks in a rapid sequence and need to constantly develop and re-arrange acting strategies. These abilities are not inherited, but develop with age and their regression forms the core of several pathologies. It is commonly held that in mammalian species the prefrontal cortex is the hub brain area accounting for the flexibility of minds (i.e. cognitive flexibility).

The Research Unit 5159 has been launched in January 2022. Our mission is to decipher the dynamic principles of prefrontal processing underlying cognitive flexibility.

Upcoming Events

Annual Meeting 2024 – 23rd and 24th of April

Details will follow

Awards and Achievements

Burkhart Bromm-Promotionspreis 2022 awarded to Dr Jastyn A. Pöpplau

Thomas Bayes-Nachwuchsförderpreis 2022 awarded to Dr. Artur Schneider

Image source: Patrick Seeger/Universität Freiburg

Thomas Bayes-Nachwuchsförderpreis: Herausragende Abschlussarbeiten (Masterarbeiten, Promotionen) auf dem Gebiet der Datenanalyse und Modellbildung in den Lebenswissenschaften. Preisgeld 5.000 Euro.

Bernstein-CorTec-Award 2022 awarded to Dr. Artur Schneider

                                                                  Image source: Patrick Seeger/Universität Freiburg

Bernstein-CorTec-Award: Hervorragende wissenschaftliche Leistungen in Promotionen oder Masterarbeiten von Promovierenden oder Studierenden der Universität Freiburg in einem für Computational Neuroscience und Neurotechnologie relevanten Thema. Preisgeld 1.000 Euro.


A persistent prefrontal reference frame across time and task rules

Nature Communications

Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex


A developmental increase of inhibition promotes the emergence of hippocampal ripples

Nature Communications